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ABSTRACT
In recent years, the technique of collaborative fuzzing has gained

prominence as an efficient method for identifying software vulnera-

bilities. This paper introduces BandFuzz, a distinctive collaborative

fuzzing framework designed to intelligently coordinate the use of

multiple fuzzers. Unlike previous tools, our approach employs rein-

forcement learning to enhance both the efficiency and effectiveness

of fuzz testing.
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1 INTRODUCTION
In recent years, collaborative fuzzing has emerged as a powerful

and effective approach to uncovering software vulnerabilities. This

collaborative approach leverages the strengths of multiple fuzzers

to enhance the overall efficacy of the fuzzing process. Notable ex-

amples [1–4] of this approach include projects such as autofz [3],

which incorporates the collective efforts of 11 different fuzzers, and

Pastis [1], a combination of three fuzzers, showcased in the SBFT23

competition. These initiatives have demonstrated the remarkable

potential of collaborative fuzzing to unearth vulnerabilities in vari-

ous software applications.

The principle of collaborative fuzzing is simple: by combining

different fuzzing techniques, we can create a more robust and com-

prehensive fuzzer. Each fuzzer contributes its unique strengths,

such as different mutation operations, or seed selection strategies.

The synergy achieved by amalgamating these distinct approaches

significantly increases the likelihood of discovering previously elu-

sive software vulnerabilities, even transforming seemingly inef-

ficient mutation strategies into highly effective ones when the
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normal mutation search space becomes exhausted. Consequently,

the scheduling of different fuzzing strategies becomes the pivotal

question.

In this paper, we introduce BandFuzz, a novel collaborative

fuzzing framework designed to intelligently orchestrate the use of

multiple fuzzers. Unlike previous tools, our method is powered by

reinforcement learning. In BandFuzz, our reinforcement learning

algorithm dynamically allocates fuzzing resources to the most ef-

fective fuzzer for a given target program. Through the algorithm,

BandFuzz could adapt and adjust its fuzzing strategy in response

to changes in the environment. This allows BandFuzz to optimize

performance in real-time instead of relying on predetermined strate-

gies based on offline evaluations. To the best of our knowledge, this

is the first work that leverages a reinforcement learning algorithm

to optimize fuzzing resource allocation for better performance.

2 METHODS
Fuzzing is an iterative process of discovering program states. Var-

ious fuzzers employ different strategies to enhance their perfor-

mance throughout the entire process, but this performance can vary

greatly between iterations. Due to limited resources in the compe-

tition (only one CPU core and a 23-hour time frame), it becomes

crucial to make informed decisions about which fuzzer to use at

each iteration. To tackle this challenge, BandFuzz incorporates

three key components aimed at optimizing fuzzing efficiency.

The first component is the Fuzzer Performance Monitor. It
acts as a real-time assessment tool, constantly evaluating the per-

formance of different fuzzers. It does this by analyzing metrics like

code coverage and execution time for each fuzzer. This monitoring

mechanism offers valuable insights into how each fuzzer performs

in the current environment.

The second component is a Reinforcement Learning Algo-
rithm. This algorithm uses performance information collected by

the Fuzzer Performance Monitor to predict which fuzzer will likely

produce the best results in the next iteration. By analyzing past per-

formance data, the algorithm aims to make smart decisions about

selecting fuzzers and improve the fuzzing process over time.

The third component is the Fuzzing Task Manager. It allocates
time and computing resources to selected fuzzers based on forecasts

generated by the reinforcement learning algorithm. Additionally,

it possesses the capability to continuously monitor the health of

fuzzers, promptly identifying crashes or infinite loops, and taking
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Table 1: Mutation score by different fuzzers for various targets

Benchmark bandfuzz (%) fox (%) libafl (%) libfuzzer (%) mystique (%) pastis (%) tunefuzz (%)

freetype2_ftfuzzer 100.00 87.00 91.00 75.00 87.00 90.00 87.00

jsoncpp_jsoncpp_fuzzer 100.00 57.00 55.00 59.00 57.00 60.00 58.00

lcms_cms_transform_fuzzer 100.00 89.00 91.00 89.00 92.00 91.00 85.00

libpcap_fuzz_both 86.00 100.00 74.00 67.00 83.00 76.00 86.00

libxml2_xml 100.00 95.00 85.00 84.00 86.00 86.00 91.00

re2_fuzzer 100.00 55.00 55.00 55.00 55.00 55.00 90.00

stb_stbi_read_fuzzer 97.00 94.00 95.00 89.00 97.00 100.00 100.00

zlib_zlib_uncompress_fuzzer 100.00 98.00 90.00 98.00 90.00 99.00 92.00

corrective actions such as rebooting to maintain their functional-

ity. Ultimately, this leads to better program state discovery within

resource constraints.

In summary, our approach BandFuzz combines real-time per-

formance monitoring, reinforcement learning-based forecasting,

and resource allocation to optimize fuzzing iterations in situations

with limited resources. This framework is designed to enhance

the efficiency and effectiveness of the fuzzing process, ultimately

leading to improved program state discovery outcomes.

3 IMPLEMENTATION
BandFuzz is comprised of 3.2K lines of Go code and includes vari-

ous code patches for fuzzer integration. To implement the Fuzzer

Performance Monitor, we also utilize a customized runtime shared

object along with LLVM coverage sanitizer. Additionally, our frame-

work is implemented as a Docker instance, enabling its inclusion

in benchmarks and competitions.

4 EVALUATION
Based on the final evaluation results of SBFT 2024, BandFuzz

achieved first place in mutation analysis benchmarks and also

demonstrated excellent performance in coverage benchmarks.

Figure 1 shows that BandFuzz achieved the highest number of

mutant kills in total.
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Figure 1: Upset figure of killed mutants for different fuzzers

As depicted in Figure 2, BandFuzz successfully covers and elim-

inates a significant number of mutants across various types. This

demonstrates the robustness of BandFuzz in bug hunting.

Table 1 presents the effectiveness of different fuzzers in eliminat-

ing mutants during mutation-based testing for various benchmarks.

The values in the table show the mutation score of each fuzzer. The
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Figure 2: Percentage of mutants covered or killed

highest value in each row is considered 100%, and other percent-

ages are relative to this maximum. BandFuzz ranked 1st on 6 of 8

benchmarks and achieved the highest average score.
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